$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

O,O'-Diethyl {(*Z*)-[(2-chlorophenyl)-(cyano)methylene]aminooxy}thiophosphonate

Qiong Gao,^a Qing-xia Zhao^a and Pu-hai Wang^{b*}

^aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, and ^bDepartment of Medicinal Chemistry, Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, No. 26 Majia Street, Nanjing 210009, People's Republic of China

Correspondence e-mail: wangpuhai@hotmail.com

Received 29 December 2008; accepted 25 February 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.061; wR factor = 0.192; data-to-parameter ratio = 15.8.

The title molecule, $C_{12}H_{14}CIN_2O_3PS$, has a *cis* configuration with respect to the C=N bond. Intermolecular C-H···O interactions interconnect the molecules into chains along the *c* axis. The chains are further connected into a two-dimensional network parallel to the *bc* plane by weak $\pi - \pi$ interactions between adjacent aromatic rings (centroid–centroid distance = 3.772Å).

Related literature

For the insectidal activity of the title compound, see: Hudson & Obudho (1972); Le Berre *et al.* (1972). For its preparation and reactivity, see: Walter & Clifton (1973); Wang *et al.* (1996).

Experimental

Crystal data C₁₂H₁₄ClN₂O₃PS

 $M_r = 332.73$

Monoclinic, $P2_1/c$	Z = 4
a = 10.518 (2) Å	Mo $K\alpha$ radiation
b = 20.215 (4) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 7.9650 (16) Å	T = 293 K
$\beta = 110.11 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 1590.3 (6) Å ³	
Data collection	
Enraf-Nonius CAD-4	2889 independent reflections
diffractometer	1981 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	3 standard reflections
(North <i>et al.</i> , 1968)	frequency: 120 min
$I_{\rm min} = 0.8/0, \ I_{\rm max} = 0.954$	intensity decay: 1.0%
2889 measured reflections	
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.061$	183 parameters
$wR(F^2) = 0.192$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
	Monoclinic, $P2_1/c$ a = 10.518 (2) Å b = 20.215 (4) Å c = 7.9650 (16) Å $\beta = 110.11$ (3)° V = 1590.3 (6) Å ³ <i>Data collection</i> Enraf–Nonius CAD-4 diffractometer Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.870$, $T_{max} = 0.954$ 2889 measured reflections <i>Refinement</i> $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.192$ S = 1.09

Table 1

2889 reflections

Hydrogen-bond geometry (Å, °).

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Social Development Foundation of Jiangsu Province, China (No. BS2007060).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2135).

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hudson, J. E. & Obudho, W. O. (1972). Mosq. News, **32**, 37-46.

- Le Berre, R., Escaffre, H., Pendriez, B., Grebaut, S. & Pengalet, P. (1972). Control of Simulium damnosum, the Vector of Human Onchocerciasis in West Africa. II. Test by Classic Application of New Insecticides and New Formulations. Bobo-Dioulasso, Upper Volta:
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Walter, A. M. & Clifton, E. M. (1973). J. Agric. Food Chem. 21, 762-763.
- Wang, P. H., Wang, R., Dai, J. R., Wu, X. Q. & Xu, J. (1996). Acta Pharm. Sin. 31, 918-924.

supplementary materials

Acta Cryst. (2009). E65, o673 [doi:10.1107/S160053680900693X]

O,O'-Diethyl {(Z)-[(2-chlorophenyl)(cyano)methylene]aminooxy}thiophosphonate

Q. Gao, Q. Zhao and P. Wang

Comment

O,O-diethyl-*O*-(2-chlorophenylglyoxylonitrile oximino)thiophosphate (Chlorphoxim) was shown to be efficient against adult mosquitoes as well as agricultural insects (Hudson *et al.*, 1972). It was also successfully tested against the larvae of the blackfly (Simulium damnosum), the insect vector of human onchocerciasis in West Africa (Le Berre *et al.*, 1972). The title substance combined with niclosamide exhibited significant molluscicidal synergism against snails (Oncomelania hupensis) (Wang *et al.*, 1996). The synthesis of the title compound has been described by Walter *et al.* (1973). As a part of our own studies in this area, we report here its crystal structure.

The title molecule shows a *cis* configuration (Fig. 1) on the C=N bond. The molecules are linked into chains along the axis c *via* weak intermolecular C—H···O interactions (Fig. 2, Tab. 1). The chains are further connected into a two-dimensional network *via* weak π - π electron interactions between the adjacent phenyl rings: The centroid-centroid distance is 3.772 Å.

Experimental

Sodium, 2.30 g (0.1 mol), reacted with 50 ml of absolute ethanol in order to get sodium ethoxide solution. 15.20 g (0.1 mol) of 2-chlorophenylacetonitrile, was added dropwise to the cooled sodium ethoxide (about 278 K) and then 10.30 g (0.1 mol) of butyl nitrite was added dropwise. The mixture was stirred at room temperature for 1 h under reduced pressure until the volume was reduced to 30 ml. Then 50 ml of ethyl ether was added, and the precipitated solid was filtered off and washed with ethyl ether to afford sodium 2-chlorophenylglyoxylonitrile oxime (11.3 g, 56%). Diethyl phosphorochloridothionate, 5.70 g (0.03 mol), was added dropwise to 6.00 g (0.03 mol) of sodium 2-chlorophenylglyoxylonitrile oxime, which was suspended in 20 ml of dry acetone. The mixture was stirred for 1 h. Thin layered chromatography using petroleum ether and ethyl acetate as expanding solvent indicated just one point. The mixture was then concentrated under reduced pressure and 50 ml of water was added to the residue. The precipitated solid that had appeared was filtered off, washed thoroughly with absolute ethanol, dried and recrystallized from petroleum ether to afford the title compound (8.9 g, yield 89%) as a white crystalline solid. The title crystals suitable for X-ray diffraction were obtained by slow evaporation of the acetone solution. The average size of the block-like crystals is $0.2 \times 0.2 \times 0.2$ mm.

Refinement

The aryl and methylene H atoms were situated into idealized positions though the aryl H atoms were clearly discernible in the difference electron density map. After the refinement with these H atoms whose parameters were fully constrained had converged the electron density map revealed that the methyl H atoms were not disordered. They were also situated into the idealized positions and constrained. C—H_{methyl}, C—H_{methylene}, C—H_{aryl}=0.96, 0.97, 0.93 Å, U_{iso} H_{methyl}=1.5 U_{eq} C_{methyl}, U_{iso} H_{methylene}=1.2 U_{eq} C_{methylene}=1.2 U_{eq} C_{methylene}=1.2

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of the title structure. The dashed lines represent weak C—H \cdots O interactions.

O,O'-Diethyl {(Z)-[(2-chlorophenyl)(cyano)methylene]aminooxy}thiophosphonate

Crystal data	
C ₁₂ H ₁₄ ClN ₂ O ₃ PS	$F_{000} = 688$
$M_r = 332.73$	$D_{\rm x} = 1.390 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 341.5 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 10.518 (2) Å	Cell parameters from 25 reflections
<i>b</i> = 20.215 (4) Å	$\theta = 9.0 - 13.0^{\circ}$
c = 7.9650 (16) Å	$\mu = 0.48 \text{ mm}^{-1}$
$\beta = 110.11 \ (3)^{\circ}$	T = 293 K
V = 1590.3 (6) Å ³	Block, colourless
<i>Z</i> = 4	$0.30\times0.20\times0.10~mm$
Data collection	
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
<i>T</i> = 293 K	$h = -12 \rightarrow 11$
$\omega/2\theta$ scans	$k = 0 \rightarrow 24$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 9$
$T_{\min} = 0.870, \ T_{\max} = 0.954$	3 standard reflections
2889 measured reflections	every 120 min
2889 independent reflections	intensity decay: 1.0%
1981 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.192$	$w = 1/[\sigma^2(F_o^2) + (0.0957P)^2 + 1.1623P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
2889 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
183 parameters	$\Delta \rho_{min} = -0.38 \text{ e } \text{\AA}^{-3}$
Drimery atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	y	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl	0.9833 (2)	0.10567 (10)	1.4318 (2)	0.1103 (7)
S	0.44401 (12)	0.05415 (6)	0.77933 (17)	0.0620 (4)
Р	0.49482 (11)	0.14026 (6)	0.73194 (14)	0.0468 (3)
01	0.3963 (3)	0.19852 (15)	0.7185 (4)	0.0562 (8)
O2	0.5248 (4)	0.15378 (16)	0.5556 (4)	0.0687 (9)
O3	0.6273 (3)	0.16956 (14)	0.8892 (4)	0.0518 (7)
N1	0.7388 (3)	0.12634 (16)	0.9243 (4)	0.0477 (8)
N2	0.8474 (5)	0.2615 (3)	1.2012 (8)	0.0939 (16)
C1	0.2127 (6)	0.2550 (3)	0.7678 (8)	0.0898 (18)
H1B	0.1664	0.2624	0.8511	0.135*
H1C	0.1501	0.2376	0.6583	0.135*
H1D	0.2493	0.2960	0.7441	0.135*
C2	0.3231 (5)	0.2074 (3)	0.8440 (7)	0.0690 (13)
H2A	0.3843	0.2236	0.9575	0.083*
H2B	0.2864	0.1653	0.8645	0.083*
C3	0.5814 (7)	0.1315 (3)	0.2996 (7)	0.0884 (18)
H3A	0.6215	0.0996	0.2437	0.133*
H3B	0.6290	0.1727	0.3118	0.133*
H3C	0.4881	0.1379	0.2273	0.133*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C4	0.5897 (7)	0.1079 (3)	0.4736 (8)	0.0847 (17)
H4A	0.5460	0.0650	0.4623	0.102*
H4B	0.6839	0.1027	0.5482	0.102*
C5	0.8423 (4)	0.2119 (2)	1.1322 (6)	0.0599 (12)
C6	0.8431 (4)	0.14942 (19)	1.0451 (5)	0.0436 (9)
C7	0.9702 (4)	0.1113 (2)	1.0871 (6)	0.0475 (9)
C8	1.0192 (5)	0.0965 (2)	0.9514 (7)	0.0590 (11)
H8A	0.9715	0.1105	0.8356	0.071*
C9	1.1372 (5)	0.0612 (3)	0.9845 (9)	0.0759 (15)
H9A	1.1686	0.0512	0.8917	0.091*
C10	1.2084 (5)	0.0411 (3)	1.1563 (10)	0.0865 (19)
H10A	1.2885	0.0174	1.1797	0.104*
C11	1.1627 (6)	0.0554 (3)	1.2906 (9)	0.0836 (17)
H11A	1.2118	0.0420	1.4065	0.100*
C12	1.0435 (5)	0.0899 (2)	1.2575 (6)	0.0642 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.1224 (14)	0.1444 (17)	0.0590 (8)	0.0170 (12)	0.0247 (9)	0.0086 (9)
S	0.0607 (7)	0.0481 (6)	0.0785 (8)	-0.0014 (5)	0.0256 (6)	-0.0008 (6)
Р	0.0463 (6)	0.0495 (6)	0.0467 (6)	0.0072 (5)	0.0187 (5)	0.0010 (5)
01	0.0543 (16)	0.0572 (18)	0.0650 (18)	0.0168 (14)	0.0309 (14)	0.0129 (14)
O2	0.084 (2)	0.070 (2)	0.063 (2)	0.0186 (18)	0.0395 (18)	0.0105 (16)
03	0.0433 (14)	0.0463 (16)	0.0648 (18)	0.0068 (12)	0.0173 (13)	-0.0028 (14)
N1	0.0452 (18)	0.0482 (19)	0.0533 (19)	0.0053 (15)	0.0216 (16)	0.0008 (15)
N2	0.077 (3)	0.080 (3)	0.124 (4)	-0.006 (3)	0.035 (3)	-0.046 (3)
C1	0.081 (4)	0.111 (5)	0.081 (4)	0.041 (4)	0.033 (3)	0.001 (3)
C2	0.079 (3)	0.072 (3)	0.065 (3)	0.020 (3)	0.036 (3)	0.005 (2)
C3	0.120 (5)	0.096 (4)	0.070 (3)	-0.002 (4)	0.060 (4)	0.004 (3)
C4	0.106 (4)	0.081 (4)	0.078 (4)	0.016 (3)	0.045 (3)	-0.001 (3)
C5	0.044 (2)	0.068 (3)	0.067 (3)	-0.004 (2)	0.018 (2)	-0.014 (2)
C6	0.048 (2)	0.041 (2)	0.042 (2)	-0.0015 (16)	0.0155 (17)	-0.0039 (16)
C7	0.041 (2)	0.043 (2)	0.058 (2)	-0.0001 (17)	0.0169 (18)	0.0001 (19)
C8	0.056 (3)	0.052 (3)	0.075 (3)	-0.002 (2)	0.031 (2)	-0.004 (2)
C9	0.063 (3)	0.059 (3)	0.121 (5)	0.001 (2)	0.051 (3)	-0.010 (3)
C10	0.053 (3)	0.055 (3)	0.142 (6)	0.008 (2)	0.020 (3)	-0.001 (3)
C11	0.065 (3)	0.070 (3)	0.093 (4)	0.005 (3)	-0.002 (3)	0.009 (3)
C12	0.062 (3)	0.060 (3)	0.062 (3)	0.001 (2)	0.010(2)	-0.006(2)

Geometric parameters (Å, °)

Cl—C12	1.743 (5)	С3—НЗА	0.9600
S—P	1.8966 (16)	С3—Н3В	0.9600
Р—О1	1.548 (3)	С3—Н3С	0.9600
Р—О2	1.566 (3)	C4—H4A	0.9700
Р—ОЗ	1.631 (3)	C4—H4B	0.9700
O1—C2	1.467 (5)	C5—C6	1.442 (6)
O2—C4	1.435 (6)	C6—C7	1.478 (5)

O3—N1	1.412 (4)	C7—C12	1.380 (6)
N1—C6	1.273 (5)	С7—С8	1.381 (6)
N2—C5	1.136 (6)	C8—C9	1.376 (7)
C1—C2	1.469 (7)	C8—H8A	0.9300
C1—H1B	0.9600	C9—C10	1.377 (9)
C1—H1C	0.9600	С9—Н9А	0.9300
C1—H1D	0.9600	C10—C11	1.347 (9)
C2—H2A	0.9700	C10—H10A	0.9300
C2—H2B	0.9700	C11—C12	1.378 (7)
C3—C4	1.440 (7)	C11—H11A	0.9300
O1—P—O2	98.17 (17)	O2—C4—C3	110.1 (5)
O1—P—O3	98.71 (16)	O2—C4—H4A	109.6
O2—P—O3	104.07 (18)	С3—С4—Н4А	109.6
O1—P—S	118.96 (13)	O2—C4—H4B	109.6
O2—P—S	119.75 (15)	С3—С4—Н4В	109.6
03—P—S	113.90 (12)	H4A - C4 - H4B	108.2
$C^{2}-O^{1}-P$	122.8 (3)	N2	177.0(5)
C4 = O2 = P	122.0(3) 124.7(3)	N1-C6-C5	177.0(3) 122 6 (4)
N1_03_P	124.7(3)	N1-C6-C7	122.0(4)
C6 N1 O3	111.1(2) 111.4(3)	11 - 60 - 67	117.2(3)
C_{2} C_{1} $H_{1}B$	100.5	$C_{12} = C_{7} = C_{7}$	120.1(4)
$C_2 = C_1 = H_1 C_2$	109.5	$C_{12} - C_{7} - C_{8}$	110.0(4)
	109.5	$C_{12}^{\circ} - C_{12}^{\circ} - C_{12}^{\circ}$	122.8(4)
	109.5	$C_{0} = C_{1} = C_{0}$	119.2 (4)
	109.5	C_{9}	121.1 (5)
HIB—CI—HID	109.5	C9—C8—H8A	119.4
HIC—CI—HID	109.5	C/—C8—H8A	119.4
01	108.9 (4)	C8—C9—C10	119.4 (5)
O1—C2—H2A	109.9	С8—С9—Н9А	120.3
C1—C2—H2A	109.9	С10—С9—Н9А	120.3
O1—C2—H2B	109.9	C11—C10—C9	120.3 (5)
C1—C2—H2B	109.9	C11—C10—H10A	119.8
H2A—C2—H2B	108.3	C9—C10—H10A	119.8
С4—С3—НЗА	109.5	C10-C11-C12	120.4 (5)
С4—С3—Н3В	109.5	C10-C11-H11A	119.8
НЗА—СЗ—НЗВ	109.5	C12-C11-H11A	119.8
С4—С3—Н3С	109.5	C11—C12—C7	120.7 (5)
НЗА—СЗ—НЗС	109.5	C11—C12—Cl	119.7 (4)
НЗВ—СЗ—НЗС	109.5	C7—C12—Cl	119.6 (4)
O2—P—O1—C2	174.0 (4)	C5—C6—C7—C12	58.7 (6)
O3—P—O1—C2	-80.3 (4)	N1—C6—C7—C8	55.6 (5)
S—P—O1—C2	43.2 (4)	C5—C6—C7—C8	-120.9 (5)
O1—P—O2—C4	-166.5 (4)	C12—C7—C8—C9	0.2 (7)
O3—P—O2—C4	92.3 (5)	C6—C7—C8—C9	179.9 (4)
S—P—O2—C4	-36.3 (5)	C7—C8—C9—C10	-0.7 (7)
O1—P—O3—N1	-177.2 (2)	C8—C9—C10—C11	0.2 (8)
O2—P—O3—N1	-76.5 (3)	C9—C10—C11—C12	0.6 (9)
S—P—O3—N1	55.7 (3)	C10—C11—C12—C7	-1.1 (8)
P	179.0 (3)	C10-C11-C12-Cl	177.9 (5)

supplementary materials

P-O1-C2-C1 P-O2-C4-C3 O3-N1-C6-C5 O3-N1-C6-C7 N1-C6-C7-C12	-164.6 (4) 170.6 (4) 0.4 (5) -176.0 (3) -124.7 (5)	C8—C7—C12—C11 C6—C7—C12—C11 C8—C7—C12—C1 C6—C7—C12—C1		0.7 (7) -179.0 (4) -178.3 (3) 2.0 (6)
Hydrogen-bond geometry (Å, °) D—H···A C2—H2A···O1 ⁱ Symmetry codes: (i) x , $-y+1/2$, $z+1/2$.	<i>D</i> —Н 0.97	H…A 2.58	<i>D…A</i> 3.396 (6)	<i>D</i> —H… <i>A</i> 142

